Phase equilibria in the RuO_2 -Bi₂O₃-CdO-Nb₂O₅ system

SLAVKO BERNIK, MARKO HROVAT, DRAGO KOLAR Jožef Stefan Institute, E. Kardelj University, Ljubljana, Yugoslavia

Interactions between the conductive phase in thick-film resistor materials (RuO_2 and $Bi_2Ru_2O_7$) and TCR modifiers (CdO and Nb_2O_5) were studied. Phase equilibria in the $RuO_2-Bi_2O_3-CdO$, $RuO_2-Bi_2O_3-Nb_2O_5$ and $RuO_2-CdO-Nb_2O_5$ systems were examined. The lines in the systems were established. The existence of a solid solution of composition $Bi_{2-x}Cd_xRu_2O_{7-x/2}$ was confirmed.

1. Introduction

Thick film resistor materials consist basically of a conductive phase, a glass phase and an organic vehicle which evaporates and burns out during the firing process. In contemporary thick-film resistors, the conductive phase is usually either RuO₂ or a ruthenate, usually Bi₂Ru₂O₇ [1–3]. Thick-film resistors, prepared only from a mixture of the conductive and glass phases, possess a relatively high positive-temperature coefficient of resistance (TCR). To decrease TCR, small amounts of so-called TCR modifiers, i.e. semiconducting oxides with negative TCR, are added. Typical TCR modifiers are CdO and Nb₂O₅ [4–6].

The aim of this work was to obtain some insight into possible interactions between the conductive phase in thick-film resistors and the TCR modifiers, CdO and Nb₂O₅. Phase equilibria in the $RuO_2-Bi_2O_3-CdO$, $RuO_2-Bi_2O_3-Nb_2O_5$ and $RuO_2-CdO-Nb_2O_5$ ternary systems will be presented.

The CdO-Nb₂O₅ phase diagram with binary compounds CdNb₂O₆ and Cd₂Nb₂O₇ was presented by Roth [7]. The compounds melt at 1435 and 1410°C, respectively. Phase equilibria in the Bi₂O₃-CdO system were studied by Jager and Kolar [8]. Binary compounds in this system are Bi₂CdO₄ which decomposes at 650° C into Bi₁₀Cd₃O₁₈ and CdO; Bi₁₀Cd₃O₁₈, which melts incongruently at 690° C; and $Bi_{12}CdO_{19}$, which also melts incongruently and is stable between 625 and 725° C. In the Bi_2O_3 -RuO₂ system [9] the binary compound Bi₂Ru₂O₇ dissociates at temperatures around 1250° C into Bi₂O₃ and RuO₂ which decomposes at temperatures over 1350°C into ruthenium and oxygen. A solid solution between $Bi_2Ru_2O_7$ and CdO with formula $Bi_{2-x}Cd_xRu_2O_{7-x/2}$ was reported by Bouchard [10] for x between 0 and 1, and by Schuler and Kemmer-Sack [11] for x between 0 and 0.9. Five binary compounds exist in the Bi₂O₃-Nb₂O₅ system [12]. Three of them $(Bi_2Nb_{10}O_{28}, Bi_2Nb_2O_8 and$ $Bi_{10}Nb_6O_{30}$) are stable under 1000° C while the other two ($Bi_8Nb_{18}O_{57}$ and $Bi_2Nb_{12}O_{33}$) are stable at temperatures over 1000°C. No data were found on the RuO_2 -CdO and RuO_2 -Nb₂O₅ systems.

2. Experimental procedure

For experimental work, Bi_2O_3 (Merck, extra pure), RuO₂ (Fluka, extra pure), CdO (Koch, 99.99%) and Nb₂O₅ (Koch, 99.9%) were used. Samples were mixed in ethyl alcohol, pressed into pellets and fired (with intermediate grinding) in air. During firing pellets were placed on platinum foils. Compositions of relevant samples are shown in Figs 1, 3 and 4. The results were evaluated by X-ray powder diffraction analysis, differential thermal analysis, scanning electron microscopy and energy dispersive X-ray spectroscopy (EDAX).

3. Results and discussion

The phase diagram of RuO₂-Bi₂O₃-CdO is presented in Fig. 1. In the RuO₂-CdO system there is neither a binary compound nor liquid phase (eutectic) at temperatures up to 1000°C, where the sublimation of CdO is already noticeable. Solid solutions of Bi_{2-x}Cd_xRu₂O_{7-x/2} for 0 < x < 0.9 were synthesized. For values of x over 0.9, beside solid solution, samples always contained RuO₂ and CdO, which is in agreement with Schuler and Kemmer-Sack [11].

Figure 1 Phase equilibria in the RuO_2 -Bi₂O₃-CdO system in the temperature range between 625° C (lower temperature stability limit of Bi₁₂CdO₁₉) and 690° C (decomposition of Bi₁₀Cd₃O₁₈).

Figure 2 (a) $Bi_{2-x}Cd_xRu_2O_{7-x-2}$ solid solution, fired above 1200° C. Because of sublimation of CdO, the microstructure is a mixture of large, elongated RuO_2 crystals and smaller $Bi_2Ru_2O_7$ grains. (b) $Bi_2Ru_2O_7$ grains.

At temperatures over 950° C, CdO begins to sublime from the solid solution and completely evaporates at higher temperatures. The microstructure of Bi_{2-x}Cd_xRu₂O_{7-x/2} fired at temperatures over 1200° C (Figs 2a and b) displays a mixture of large, elongated crystals of RuO₂ and smaller grains of Bi₂Ru₂O₇.

The tie lines are between solid solution-RuO₂, solid solution-Bi₁₂CdO₁₉, Bi_{1.1}Cd_{0.9}Ru₂O_{6.55}-Bi₁₀Cd₃O₁₈ and Bi_{1.1}Cd_{0.9}Ru₂O_{6.55}-CdO. The phase equilibria, as shown in Fig. 1, are accurate at temperatures between 625°C (lower temperature stability limit of Bi₁₂CdO₁₉O) and 690°C (decomposition of Bi₁₀Cd₃O₁₈).

The phase diagram of $RuO_2-Nb_2O_5-CdO$ is presented in Fig. 3. In the CdO-Nb₂O₅ system both compounds reported by Roth [7], i.e.CdNb₂O₆ and Cd₂Nb₂O₇, were synthesized. In the RuO₂-Nb₂O₅ system there is no binary compound. Formation of the liquid phase (eutectic) was not detected up to 1350° C, which is the temperature of dissociation of RuO₂ into ruthenium and oxygen. No ternary compound was found. Tie lines are between RuO₂-Cd₂Nb₂O₇ and RuO₂-CdNb₂O₆.

The phase diagram $RuO_2-Bi_2O_3-Nb_2O_5$ is presented in Fig. 4. No ternary compound was found in the system. In the $Bi_2O_3-Nb_2O_5$ system, three binary compounds, stable under $1000^{\circ}C$ ($Bi_2Nb_{10}O_{28}$, $Bi_2Nb_2O_8$ and $Bi_{10}Nb_6O_{30}$), were synthesized. Tie lines are between RuO_2 - $Bi_2Nb_{10}O_{28}$, RuO_2 - $Bi_2Nb_2O_8$, RuO_2 - $Bi_{10}Nb_6O_{30}$ and $Bi_2Ru_2O_7$ - $Bi_{10}Nb_6O_{30}$.

The results of phase equilibria investigations indicate possible reactions between the conductive phase in thick-film resistor materials and TCR modifiers, i.e. CdO and Nb₂O₅. When RuO₂ forms the conductive phase in a resistor material, then neither CdO nor Nb₂O₅ react, nor do they form new compounds with it. When the conductive phase is Bi₂Ru₂O₇, CdO is incorporated into the pyrochlore structure of bismuth ruthenate, resulting in Bi_{2-x}Cd_xRu₂O_{7-x/2} solid solution. The "displaced" Bi₂O₃ could react with CdO, but more likely dissolves in the glass phase, which is a component part of thick-film resistor materials. Nb₂O₅ also reacts with Bi₂Ru₂O₇ resulting in RuO₂ and one of the compounds between Bi₂O₃ and Nb₂O₅.

It should be mentioned, however, that the results described are a very idealized picture of what is really happening during firing in actual thick-film resistor materials. Resistor materials are complex systems composed of glasses with different compositions, a conductive phase and TCR modifiers, all of them reacting with each other during the firing. Also, due to the relatively short time at the highest temperature (usually 10 min at 850° C), the reactions in resistor

Figure 3 Phase equilibria in the $RuO_2-Nb_2O_5-CdO$ system in the temperature range up to $1000^{\circ}C$.

Figure 4 Phase equilibria in the $RuO_2-Bi_2O_3-Nb_2O_5$ system in the temperature range up to 1000° C.

material do not reach equilibria. Nevertheless, the results obtained indicate the direction of reactions during firing.

4. Conclusion

Phase equilibria in RuO₂-Bi₂O₃-CdO, RuO₂-Bi₂O₃-Nb₂O₅ and RuO₂-CdO-Nb₂O₅ systems were investigated. Tie lines in ternary phase diagrams were established. In the RuO₂-Bi₂O₃-CdO system there is a Bi_{2-x}Cd_xRu₂O_{7-x/2} solid solution for x values between 0 and 0.9. The results indicate possible interactions between the conductive phase in thick-film resistor materials and TCR modifiers. If the conductive phase is RuO₂, CdO or Nb₂O₅ do not react with it. In the case of Bi₂Ru₂O₇ as the conductive phase, reaction with CdO results in the solid solution Bi_{2-x}Cd_xRu₂O_{7-x/2}, while the result of reaction with Nb₂O₅ is RuO₂ and one of the Bi₂O₃/Nb₂O₅ compounds.

References

1. J. W. PIERCE, D. W. KUTY and J. L. LARRY, Proceedings of 3rd European Hybrid Microelectronics Conference, Avignon (May, 1981) pp. 283-301.

- 2. L. C. HOFFMAN, Ceram. Bull. 63 (1984) 572.
- 3. R. W. VEST, *ibid.* 65 (1986) 631.
- 4. J. S. SHAH and W. C. HAHN, *IEEE Trans.* CHMT-1 (1978) 383.
- 5. J. LEE and R. W. VEST, ibid. CHMT-6 (1983) 430.
- H. Z. WU, R. W. VEST and R. G. CAROL, Proceedings of the 1984 International Symposium on Microelectronics, Dallas, Texas, September 1984, edited by the 1984 Technical Program Committee and the Society Staff (1984) pp. 194–201.
- 7. R. S. ROTH, J. Amer. Ceram. Soc. 44 (1961) 49.
- A. JAGER and D. KOLAR, J. Solid State Chem. 53 (1984) 35.
- 9. M. HROVAT, S. BERNIK and D. KOLAR, to be published.
- 10. R. J. BOUCHARD, US Pat. no. 3 583 931 (1971).
- 11. M. SCHULER and S. KEMMER-SACK, J. Less Common Metals 102 (1984) 105.
- H. LEHL (ed.), "Gmelins Handbuch der Anorganishes Chemie", 8. Aufl., no. 49, Nb (B1), (Verl. Chem. Weinheim, 1970) pp. 45–79.

Received 17 May and accepted 12 September 1988